Importance sampling-based estimation over AND/OR search spaces for graphical models
نویسندگان
چکیده
The paper introduces a family of approximate schemes that extend the process of computing sample mean in importance sampling from the conventional OR space to the AND/OR search space for graphical models. All the sample means are defined on the same set of samples and trade time with variance. At one end is the AND/OR sample tree mean which has the same time complexity as the conventional OR sample tree mean but has lower variance. At the other end is the AND/OR sample graph mean which requires more time to compute but has the lowest variance. The paper provides theoretical analysis as well as empirical evaluation demonstrating that the AND/OR sample tree and graph means are far closer to the true mean than the OR sample tree mean.
منابع مشابه
A New Unbiased and Efficient Class of LSH-Based Samplers and Estimators for Partition Function Computation in Log-Linear Models
Log-linear models are arguably the most successful class of graphical models for large-scale applications because of their simplicity and tractability. Learning and inference with these models require calculating the partition function, which is a major bottleneck and intractable for large state spaces. Importance Sampling (IS) and MCMC-based approaches are lucrative. However, the condition of ...
متن کاملAnytime Depth-First Search with Problem Decomposition for Optimization in Graphical Models
One popular and efficient scheme for solving exactly MPE/MAP and related problems over graphical models is depth-first Branch and Bound. However, when the algorithm exploits problem decomposition using AND/OR search spaces, its anytime behavior breaks down. This paper 1) analyzes and demonstrates this inherent conflict between effective exploitation of problem decomposition (through AND/OR sear...
متن کاملAND/OR Importance Sampling
The paper introduces AND/OR importance sampling for probabilistic graphical models. In contrast to importance sampling, AND/OR importance sampling caches samples in the AND/OR space and then extracts a new sample mean from the stored samples. We prove that AND/OR importance sampling may have lower variance than importance sampling; thereby providing a theoretical justification for preferring it...
متن کاملImportance Sampling over Sets: A New Probabilistic Inference Scheme
Computing expectations in high-dimensional spaces is a key challenge in probabilistic inference and machine learning. Monte Carlo sampling, and importance sampling in particular, is one of the leading approaches. We propose a generalized importance sampling scheme based on randomly selecting (exponentially large) subsets of states rather than individual ones. By collecting a small number of ext...
متن کاملRecursive Best-First AND/OR Search for Optimization in Graphical Models
The paper presents and evaluates the power of limited memory best-first search over AND/OR spaces for optimization tasks in graphical models. We propose Recursive Best-First AND/OR Search with Overestimation (RBFAOO), a new algorithm that explores the search space in a best-first manner while operating with restricted memory. We enhance RBFAOO with a simple overestimation technique aimed at min...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artif. Intell.
دوره 184-185 شماره
صفحات -
تاریخ انتشار 2012